

GMRC 2011

Understanding FTIR formaldehyde measurement and its influence on the RICE NESHAP rule

Authors: Shazam Williams, Joe Aleixo, Robin Hu, Yuki Leung

Company: DCL International Inc.

DCL Overview

Manufacturer of catalytic emission controls for industrial engines, off-road and stationary

Outline

- Background
- Experimental
- Results and Discussion
- Implication of Results on Field Testing
- Conclusion

Background

- In 2010, the EPA finalized a national regulation for reducing emissions from stationary compression ignition (CI) and spark ignition (SI) engines.
 - Reciprocating Internal Combustion Engines
 National Emission Standards for Hazardous Air
 Pollutants (RICE NESHAP).

RICE NESHAP

• Stationary compression ignition (CI) and spark ignition (SI) engines

Hazardous air pollutants (HAP) from internal combustion engines

RICE NESHAP -formaldehyde

- For rich burn engines >500 horsepower,
 - RICE NESHAP rule requires
 - >76% formaldehyde removal efficiency
 - or below 2.7ppmv@15% O₂.

How?

- EPA proposes using EPA Method 320 or ASTM D6348-03 for formaldehyde measurements.
 - Both use Fourier Transform Infrared
 Spectrometer (FTIR).
- Alternative:
 - EPA Method 323

FTIR advantages

- FTIR is cost-effective if more than 4 gases need to be measured.
- FTIR requires minimum calibration and so reduces costs.
- Can be easily shipped on-site.

How does FTIR work?

- Fourier Transform Infrared Spectroscopy
 - Qualitative and quantitative

Objective

- To describe issues and challenges of using FTIR for formaldehyde (CH₂O) measurement.
- To investigate how accurate low formaldehyde measurement is, with different instrument settings and the presence of other exhaust chemical components.

Experimental - Test parameters

Instrument setup

- Use FTIR manufacturer's recommended specs
 - Gas cell pressure, line position, spectral resolution, path length, etc.
 - Gas cell temperature
 - -Method of 150°C (302°F) vs. 191°C (375.8°F) gas cell temperature.

Tested in this paper

-MKS recommends using 191°C cell temperature however, some companies in the field use the 150°C method (older).

Experimental - Test parameters (Cont'd)

- Exhaust chemical components
 - Methane (CH₄)
 - Ethane (C_2H_6)
 - Formaldehyde (CH₂O)
 - Nitric oxides (NOx)
 - Carbon monoixde (CO)
 - Carbon dioxide (CO₂)
 - Water (H₂O)

Tested in this paper

Test Procedures

Equipment: model gas reactor, mass flow controllers, bottled gases, preheater, heating tape, FTIR

- 1. Base stream: N_2 + air
- 2. Add in desired gas components (e.g. methane) as step change.
- 3. Step change at difference concentrations.
- 4. Repeat test with different gas cell temperatures.

1. FIXED N₂ + AIR, 0 PPM CH₂O STEP TEST ON METHANE

No bias with methane!

• Within the FTIR detection limit of 0.3ppm CH₂O and the standard deviation; no significant bias on CH₂O readings:

2. FIXED N₂ + AIR, 0 PPM CH₂O STEP TEST ON ETHANE

Ethane causes bias!

- 150°C cell temperature method,
 - $[CH_2O bias] = 0.004[C_2H_6]$
- 191°C cell temperature method,
 - formaldehyde bias is within the FTIR detection limit of 0.3ppm

3. FIXED N₂ + AIR, 0PPM CH₂O STEP TEST ON HC MIXTURE

(HC MIXTURE OF 2% PROPANE, 6% ETHANE, 40% METHANE)

Other hydrocarbons?

- Consistent with C₂H₆ test results:
 - [CH₂O bias] = 0.004 [C₂H₆] for the 150 °C method
 - No significant bias when using the 191°C method

4. FIXED N₂ + AIR + 6PPM CH₂O, STEP TEST ON ETHANE

Ethane + formaldehyde?

- Consistent with C_2H_6 test results:
 - $[CH_2O bias] = 0.004 [C_2H_6]$ for the 150°C method
- No significant bias when using the 191°C method.

Bias by ethane – Why?

• Bias of formaldehyde by ethane is caused by the incapability of the 150°C cell temp ethane calibration file to match sufficiently well with the spectra of higher concentration of ethane.

Single point (0-50ppm):

- Measurements higher than 50ppm are calculated by extrapolation.

Please see detail proofs in paper.

Field test examples

• Formaldehyde and ethane data:

Fail the criterion of 76% formaldehyde removal

efficiency

Formaldehyde					
Engine #	1	2	3	4	5
Catalyst Outlet (ppm)	5.3	1.3	0.6	0.4	0.5
Engine Outlet (ppm)	19.1	5	4.2	6.6	6.9
% conv.	72.3	74.0	85.7	93.9	92.8

CH₂O conversion without bias adjustment.

Ethane					
Catalyst	459.2	30	50.0	44.7	23.3
Outlet (ppm)	433.2	30	50.0	44.7	23.3
Engine Outlet	702.6	90	140 1	70.1	114.9
(ppm)	703.6	80	140.1	/0.1	114.9

Pass or fail?

• If $[CH_2O bias] = 0.004 [C_2H_6]$ is taken into account:

(at 150°C gas cell	Ethane	<u>•</u>	Formaldehyde	
temperature)			(correct for	
			bias)	
Engine outlet (ppm)	703.6	19.1	16.22	
Catalyst outlet (ppm)	459.2	5.3	3.42	
Conversion %		72.3%	78.9%	

With bias = Fail

Corrected for bias = Pass

Implications of results on field testing

- Issue in emission test
 - especially at low CH₂O conc. (<10
 ppm), or high ethane conc. situations
 - The effect would be most noticeable when the CH₂O value is close to the passing target of >76% formaldehyde removal efficiency or 2.7ppmv (@15%O₂).

Conclusion

- EPA Method 320 and ASTM D6348-03 provides sufficient precision/accuracy for CH₂O in RICE NESHAP rule when ethane bias is eliminated.
 - Correct sampling methodologies must be followed
 - However, tighter regulations may require a new test methodology.

• MKS 2030 FTIR:

- Method of gas cell temp. 191°C eliminates ethane bias
- Method of gas cell temp. 150°C not recommended.

Thank you?

